Modeling Cellular Contraction on Biohybrid Devices using Thermal Contraction Capabilities of Finite Element Analysis Tools

Victoria A. Webster¹, Ozan Akkus^{1,4,5}, Hillel J. Chiel^{2,3,4}, and Roger D. Quinn¹

1) Dept. of Mechanical and Aerospace Engineering, 2) Dept. of Biology, 3) Dept. of Neurosciences, 4) Dept. of Biomedical Engineering, 5) Dept. of Orthopaedics Case Western Reserve University

Introduction

Biohybrid Devices

• Fabricated using biocompatible substrates, actuated by muscle cells

Modeling Techniques

- Existing techniques use FEA with individual • forces and device specific models
- Engineering models are needed which are computationally efficient and reduce access barriers for new researchers

Calibration

• Resulted in range of $\alpha \Delta T$: -0.009 to -0.423

Micropillars ^[2]

• 2-D simulation of contracting microtissue between two synthetic polymer pillars

Conclusions

- Utilizing thermal contraction improves simulation run-time • 78% reduction for 10 mm cantilever
- An initial range of TEC values of -0.061 to -0.152 can be used to simulate cellular contraction
- Scatter in the available data leads to scatter in the calibration results
- Potential sources of scatter: \bullet
 - Constitutive values assumed rather than measured directly (i.e. cell layer modulus)

Purpose

To Identify Thermal Expansion Coefficient (TEC) that can be used to emulate cell induced contractions in Finite Element Analysis (FEA)

Methods

R : experimentally measured radius of curvature of the beam ν : Poisson's ratio t_c and t_s : thicknesses of the cell and substrate layers, respectively E_c and E_s : moduli of the cells and substrate, respectively

 $\gamma = E_c'/E_s'$

- 0.098 0.397 0.098 25 25 0.397 5059.83 10115.1 15170.4 9 7587.48 12642.8 17698 (n) = 12Jon 10 ■ Exp • Median Sim. Tissue
 - Top Left: FEA simulation (stress) of micropillar array based on Legant et al. 2009^[2].

Top Right: Material properties for the four models simulated

Bottom: A comparison of the tissue force reported by Legant et al. and simulation results

Biohybrid Walker^[4]

- Large range of substrate moduli
 - Substrate modulus effects cell function^[10,11]
- Based on preliminary calibration
 - For models with higher cell moduli, a lower TEC value should be used
 - For models with low cell modulus and low substrate modulus a higher TEC value should be used
- Modeling technique provides guidance for taking the necessary data to predict device behavior

Future Work

- Improve model calibration
 - Perform systematic experiments
- Measure substrate modulus, cell layer modulus, and thickness directly
- Develop multi-scale simulations of biohybrid devices and living machines
- Incorporate FEA simulations and discrete rigid body dynamic simulations to improve living machine design

- Calibrated TEC values from 7 cantilever models from 3 studies in existing literature ^[1,3,5]
- Wide range of geometric and material properties •Thickness: 0.02 – 0.45 mm
 - •Length: 0.25 10 mm
 - •Width: 0.1 20 mm
 - •Substrate Modulus: 17.82 1500 kPa
 - •Cell Modulus: 10-188 kPa

300

<u>Z</u>250

Tension 1200

001 Gi

50

Cvetkovic et al. and simulation results

.188092 .564277 .940462 1.31665 1.6928

1 Hz stimulation

4 Hz stimulation

Acknowledgements

References

[1] J. Park et al. Anal. Chem., vol. 77, pp. 6571–80, Oct. 2005. [2] W. Legant et al. *PNAS*, vol. 106, no. 25, pp. 10097–102, 2009. [3] A. Feinberg et al. *Science*, vol. 317, pp. 1366–70, Sep. 2007. [4] C. Cvetkovic et al. PNAS, vol. 111, no. 28, pp. 10125–30, Jun. 2014. [5] V. Chan et al. *Lab Chip*, vol. 12, pp. 88–98, Jan. 2012. [6] K. Wilson et al. *PLoS One*, vol. 5, no. 6, p. e11042, Jan. 2010. [7] A. Atkinson. Br. Ceram. Proc., vol. 54, no. 1, 1995. [8] C. Klein. J. Appl. Phys., vol. 88, no. 9, p. 5487, 2000. [9] K. Na et al. *NSTI-Nanotech*, 2008, vol. 3, pp. 737–740. [10] Engler et al. J. Cell Science, 2008, 121, 3794-3802. [11] Bhana et al. Biotechnol Bioeng, 2010, 105(6), 1148-60.

Sim. Range Exp. ---- Sim. Median

Top: FEA simulation (deflection) of one half of a biohybrid walker based on

Cvetkovic et al. 2014^[4]. Bottom: a comparison of the active tension reported by

